ÌÇÐÄvlog

Object moved to here.

Phase 2 Trial Evaluating Minocycline for Geographic Atrophy in Age-Related Macular Degeneration: A Nonrandomized Controlled Trial | Retinal Disorders | JAMA Ophthalmology | ÌÇÐÄvlog

ÌÇÐÄvlog

[Skip to Navigation]
Sign In
1.
Csaky ÌýK, Ferris ÌýF ÌýIII, Chew ÌýEY, Nair ÌýP, Cheetham ÌýJK, Duncan ÌýJL. ÌýReport from the NEI/FDA Endpoints Workshop on age-related macular degeneration and inherited retinal diseases.Ìý ÌýInvest Ophthalmol Vis Sci. 2017;58(9):3456-3463. doi:
2.
Apellis Pharmaceuticals. FDA approves SYFOVRE (pegcetacoplan injection) as the first and only treatment for geographic atrophy (GA), a leading cause of blindness. Accessed February 28, 2023.
3.
Iveric Bio. Iveric Bio receives US FDA approval for IZERVAY (avacincaptad pegol intravitreal solution), a new treatment for geographic atrophy. Accessed August 11, 2023.
4.
Liao ÌýDS, Grossi ÌýFV, El Mehdi ÌýD, Ìýet al. ÌýComplement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial.Ìý Ìý°¿±è³ó³Ù³ó²¹±ô³¾´Ç±ô´Ç²µ²â. 2020;127(2):186-195. doi:
5.
Jaffe ÌýGJ, Westby ÌýK, Csaky ÌýKG, Ìýet al. ÌýC5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration: a randomized pivotal phase 2/3 trial.Ìý Ìý°¿±è³ó³Ù³ó²¹±ô³¾´Ç±ô´Ç²µ²â. 2021;128(4):576-586. doi:
6.
Mai ÌýJ, Lachinov ÌýD, Riedl ÌýS, Ìýet al. ÌýClinical validation for automated geographic atrophy monitoring on OCT under complement inhibitory treatment.Ìý ÌýSci Rep. 2023;13(1):7028. doi:
7.
Pfau ÌýM, Schmitz-Valckenberg ÌýS, Ribeiro ÌýR, Ìýet al. ÌýAssociation of complement C3 inhibitor pegcetacoplan with reduced photoreceptor degeneration beyond areas of geographic atrophy.Ìý ÌýSci Rep. 2022;12(1):17870. doi:
8.
Zhang ÌýY, Wong ÌýWT. ÌýInnate immunity in age-related macular degeneration.Ìý ÌýAdv Exp Med Biol. 2021;1256:121-141. doi:
9.
Allingham ÌýMJ, Loksztejn ÌýA, Cousins ÌýSW, Mettu ÌýPS. ÌýImmunological aspects of age-related macular degeneration.Ìý ÌýAdv Exp Med Biol. 2021;1256:143-189. doi:
10.
Fleckenstein ÌýM, Keenan ÌýTDL, Guymer ÌýRH, Ìýet al. ÌýAge-related macular degeneration.Ìý ÌýNat Rev Dis Primers. 2021;7(1):31. doi:
11.
Guillonneau ÌýX, Eandi ÌýCM, Paques ÌýM, Sahel ÌýJA, Sapieha ÌýP, Sennlaub ÌýF. ÌýOn phagocytes and macular degeneration.Ìý ÌýProg Retin Eye Res. 2017;61:98-128. doi:
12.
Fletcher ÌýEL. ÌýContribution of microglia and monocytes to the development and progression of age-related macular degeneration.Ìý ÌýOphthalmic Physiol Opt. 2020;40(2):128-139. doi:
13.
Levy ÌýO, Calippe ÌýB, Lavalette ÌýS, Ìýet al. ÌýApolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration.Ìý ÌýEMBO Mol Med. 2015;7(2):211-226. doi:
14.
Bharti ÌýK, den Hollander ÌýAI, Lakkaraju ÌýA, Ìýet al. ÌýCell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration.Ìý ÌýExp Eye Res. 2022;222:109170. doi:
15.
Handa ÌýJT, Bowes Rickman ÌýC, Dick ÌýAD, Ìýet al. ÌýA systems biology approach towards understanding and treating nonneovascular age-related macular degeneration.Ìý ÌýNat Commun. 2019;10(1):3347. doi:
16.
Soundara Pandi ÌýSP, Ratnayaka ÌýJA, Lotery ÌýAJ, Teeling ÌýJL. ÌýProgress in developing rodent models of age-related macular degeneration (AMD).Ìý ÌýExp Eye Res. 2021;203:108404. doi:
17.
Schnichels ÌýS, Paquet-Durand ÌýF, Löscher ÌýM, Ìýet al. ÌýRetina in a dish: Cell cultures, retinal explants, and animal models for common diseases of the retina.Ìý ÌýProg Retin Eye Res. 2021;81:100880. doi:
18.
Yrjänheikki ÌýJ, Keinänen ÌýR, Pellikka ÌýM, Hökfelt ÌýT, Koistinaho ÌýJ. ÌýTetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia.Ìý ÌýProc Natl Acad Sci U S A. 1998;95(26):15769-15774. doi:
19.
Yrjänheikki ÌýJ, Tikka ÌýT, Keinänen ÌýR, Goldsteins ÌýG, Chan ÌýPH, Koistinaho ÌýJ. ÌýA tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window.Ìý ÌýProc Natl Acad Sci U S A. 1999;96(23):13496-13500. doi:
20.
Kraus ÌýRL, Pasieczny ÌýR, Lariosa-Willingham ÌýK, Turner ÌýMS, Jiang ÌýA, Trauger ÌýJW. ÌýAntioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity.Ìý ÌýJ Neurochem. 2005;94(3):819-827. doi:
21.
Pi ÌýR, Li ÌýW, Lee ÌýNT, Ìýet al. ÌýMinocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways.Ìý ÌýJ Neurochem. 2004;91(5):1219-1230. doi:
22.
Shimazawa ÌýM, Yamashima ÌýT, Agarwal ÌýN, Hara ÌýH. ÌýNeuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage.Ìý ÌýBrain Res. 2005;1053(1-2):185-194. doi:
23.
Krady ÌýJK, Basu ÌýA, Allen ÌýCM, Ìýet al. ÌýMinocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy.Ìý Ìý¶Ù¾±²¹²ú±ð³Ù±ð²õ. 2005;54(5):1559-1565. doi:
24.
Zhao ÌýL, Ma ÌýW, Fariss ÌýRN, Wong ÌýWT. ÌýMinocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy.Ìý ÌýAm J Pathol. 2011;179(3):1265-1277. doi:
25.
Hughes ÌýEH, Schlichtenbrede ÌýFC, Murphy ÌýCC, Ìýet al. ÌýMinocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism.Ìý ÌýExp Eye Res. 2004;78(6):1077-1084. doi:
26.
Yang ÌýLP, Li ÌýY, Zhu ÌýXA, Tso ÌýMO. ÌýMinocycline delayed photoreceptor death in rds mice through iNOS-dependent mechanism.Ìý ÌýMol Vis. 2007;13:1073-1082.
27.
Garrido-Mesa ÌýN, Zarzuelo ÌýA, Gálvez ÌýJ. ÌýMinocycline: far beyond an antibiotic.Ìý ÌýBr J Pharmacol. 2013;169(2):337-352. doi:
28.
Liefers ÌýB, Colijn ÌýJM, González-Gonzalo ÌýC, Ìýet al. ÌýA deep-learning model for segmentation of geographic atrophy to study its long-term natural history.Ìý Ìý°¿±è³ó³Ù³ó²¹±ô³¾´Ç±ô´Ç²µ²â. 2020;127(8):1086-1096. doi:
29.
Shen ÌýL, Liu ÌýF, Grossetta Nardini ÌýH, Del Priore ÌýLV. ÌýNatural history of geographic atrophy in untreated eyes with nonexudative age-related macular degeneration: a systematic review and meta-analysis.Ìý ÌýOphthalmol Retina. 2018;2(9):914-921. doi:
30.
Yehoshua ÌýZ, Rosenfeld ÌýPJ, Gregori ÌýG, Ìýet al. ÌýProgression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography.Ìý Ìý°¿±è³ó³Ù³ó²¹±ô³¾´Ç±ô´Ç²µ²â. 2011;118(4):679-686. doi:
31.
Feuer ÌýWJ, Yehoshua ÌýZ, Gregori ÌýG, Ìýet al. ÌýSquare root transformation of geographic atrophy area measurements to eliminate dependence of growth rates on baseline lesion measurements: a reanalysis of age-related eye disease study report No. 26.Ìý ÌýJAMA Ophthalmol. 2013;131(1):110-111. doi:
32.
Wagner ÌýAK, Soumerai ÌýSB, Zhang ÌýF, Ross-Degnan ÌýD. ÌýSegmented regression analysis of interrupted time series studies in medication use research.Ìý ÌýJ Clin Pharm Ther. 2002;27(4):299-309. doi:
33.
Fitzmaurice ÌýG, Laird ÌýN, Ware ÌýJ. ÌýApplied Longitudinal Analysis. Wiley; 2011. doi:
34.
Hariri ÌýA, Heussen ÌýFM, Nittala ÌýMG, Sadda ÌýSR. ÌýOptical coherence tomographic correlates of angiographic subtypes of occult choroidal neovascularization.Ìý ÌýInvest Ophthalmol Vis Sci. 2013;54(13):8020-8026. doi:
35.
Hu ÌýZ, Medioni ÌýGG, Hernandez ÌýM, Hariri ÌýA, Wu ÌýX, Sadda ÌýSR. ÌýSegmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.Ìý ÌýInvest Ophthalmol Vis Sci. 2013;54(13):8375-8383. doi:
36.
Evaluation of Oral Minocycline in the Treatment of Geographic Atrophy Associated With Age-Related Macular Degeneration. ClinicalTrials.gov identifier: NCT02564978. Updated September 23, 2022. Accessed July 7, 2023.
37.
Afrin ÌýA, Cohen ÌýPR. ÌýDoxycycline-associated hyperpigmentation: a case report and literature review.Ìý Ìý°ä³Ü°ù±ð³Ü²õ. 2022;14(4):e23754. doi:
38.
Rok ÌýJ, Rzepka ÌýZ, Kowalska ÌýJ, Banach ÌýK, Beberok ÌýA, WrzeÅ›niok ÌýD. ÌýMolecular and biochemical basis of minocycline-induced hyperpigmentation—the study on normal human melanocytes exposed to UVA and UVB radiation.Ìý ÌýInt J Mol Sci. 2021;22(7):3755. doi:
39.
Young ÌýK, Pagan ÌýAD, Yoon ÌýJ, Ìýet al. ÌýDifferences in risk of tetracycline-associated hyperpigmentation between racial and ethnic groups in patients with acne vulgaris: a national US retrospective study.Ìý ÌýJ Am Acad Dermatol. 2023;88(4):872-875. doi:
40.
Barrett ÌýT, de Zwaan ÌýS. ÌýPicosecond alexandrite laser is superior to Q-switched Nd:YAG laser in treatment of minocycline-induced hyperpigmentation: a case study and review of the literature.Ìý ÌýJ Cosmet Laser Ther. 2018;20(7-8):387-390. doi:
41.
US Food and Drug Administration. Minocin (minocycline hydrochloride) pellet-filled capsules. Accessed June 12, 2023.
42.
Taylor ÌýPN, Lansdown ÌýA, Witczak ÌýJ, Ìýet al. ÌýAge-related variation in thyroid function—a narrative review highlighting important implications for research and clinical practice.Ìý ÌýThyroid Res. 2023;16(1):7. doi:
43.
Kim ÌýMI. Hypothyroidism in older adults. In: Feingold ÌýKR, Anawalt ÌýB, Blackman ÌýMR, Ìýet al, eds. ÌýEndotext [Internet]. MDText.com; 2000.
44.
Sunness ÌýJS, Margalit ÌýE, Srikumaran ÌýD, Ìýet al. ÌýThe long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials.Ìý Ìý°¿±è³ó³Ù³ó²¹±ô³¾´Ç±ô´Ç²µ²â. 2007;114(2):271-277. doi:
45.
Clinical Study to Evaluate Treatment With ORACEA for Geographic Atrophy (TOGA). ClinicalTrials.gov identifier: NCT01782989. Updated November 4, 2022. Accessed December 12, 2022.
46.
Holz ÌýFG, Sadda ÌýSR, Busbee ÌýB, Ìýet al; Chroma and Spectri Study Investigators. ÌýEfficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: Chroma and Spectri Phase 3 randomized clinical trials.Ìý ÌýJAMA Ophthalmol. 2018;136(6):666-677. doi:
47.
Keenan ÌýTD, Agrón ÌýE, Domalpally ÌýA, Ìýet al; AREDS2 Research Group. ÌýProgression of geographic atrophy in age-related macular degeneration: AREDS2 report number 16.Ìý Ìý°¿±è³ó³Ù³ó²¹±ô³¾´Ç±ô´Ç²µ²â. 2018;125(12):1913-1928. doi:
Views 2,253
Original Investigation
March 14, 2024

Phase 2 Trial Evaluating Minocycline for Geographic Atrophy in Age-Related Macular Degeneration: A Nonrandomized Controlled Trial

Author Affiliations
  • 1National Eye Institute, National Institutes of Health, Bethesda, Maryland
  • 2Bristol Eye Hospital, Bristol, United Kingdom
  • 3The Emmes Company LLC, Rockville, Maryland
  • 4Doheny Eye Institute, Pasadena, California
  • 5Now with Genentech Inc, South San Francisco, California
  • 6University of California, Los Angeles, Los Angeles
  • 7Now with Janssen Research and Development LLC, Brisbane, California
JAMA Ophthalmol. 2024;142(4):345-355. doi:10.1001/jamaophthalmol.2024.0118
Key Points

QuestionÌý What are the safety and possible anatomic efficacy of oral minocycline, a microglial inhibitor, for the treatment of geographic atrophy (GA) in age-related macular degeneration (AMD)?

FindingsÌý In this phase 2 nonrandomized controlled trial that included 37 participants, the mean square root GA enlargement rate was 0.31 mm per year during the 9-month run-in phase and 0.28 mm per year during the 24-month treatment phase. The difference was not significant.

MeaningÌý Results suggest that oral minocycline at this dose likely was not associated with slower rate of enlargement of GA in AMD.

Abstract

ImportanceÌý Existing therapies to slow geographic atrophy (GA) enlargement in age-related macular degeneration (AMD) have relatively modest anatomic efficacy, require intravitreal administration, and increase the risk of neovascular AMD. Additional therapeutic approaches are desirable.

ObjectiveÌý To evaluate the safety and possible anatomic efficacy of oral minocycline, a microglial inhibitor, for the treatment of GA in AMD.

Design, Setting, and ParticipantsÌý This was a phase 2, prospective, single-arm, 45-month, nonrandomized controlled trial conducted from December 2016 to April 2023. Patients with GA from AMD in 1 or both eyes were recruited from the National Institutes of Health (Bethesda, Maryland) and Bristol Eye Hospital (Bristol, UK). Study data were analyzed from September 2022 to May 2023.

InterventionÌý After a 9-month run-in phase, participants began oral minocycline, 100 mg, twice daily for 3 years.

Main Outcomes and MeasuresÌý The primary outcome measure was the difference in rate of change of square root GA area on fundus autofluorescence between the 24-month treatment phase and 9-month run-in phase.

ResultsÌý Of the 37 participants enrolled (mean [SD] age, 74.3 [7.6] years; 21 female [57%]), 36 initiated the treatment phase. Of these participants, 21 (58%) completed at least 33 months, whereas 15 discontinued treatment (8 by request, 6 for adverse events/illness, and 1 death). Mean (SE) square root GA enlargement rate in study eyes was 0.31 (0.03) mm per year during the run-in phase and 0.28 (0.02) mm per year during the treatment phase. The primary outcome measure of mean (SE) difference in enlargement rates between the 2 phases was −0.03 (0.03) mm per year (P = .39). Similarly, secondary outcome measures of GA enlargement rate showed no differences between the 2 phases. The secondary outcome measures of mean difference in rate of change between 2 phases were 0.2 letter score per month (95% CI, −0.4 to 0.9; P = .44) for visual acuity and 0.7 μm per month (−0.4 to 1.8; P = .20) for subfoveal retinal thickness. Of the 129 treatment-emergent adverse events among 32 participants, 49 (38%) were related to minocycline (with no severe or ocular events), including elevated thyrotropin level (15 participants) and skin hyperpigmentation/discoloration (8 participants).

Conclusions and RelevanceÌý In this phase 2 nonrandomized controlled trial, oral minocycline was not associated with a decrease in GA enlargement over 24 months, compared with the run-in phase. This observation was consistent across primary and secondary outcome measures. Oral minocycline at this dose is likely not associated with slower rate of enlargement of GA in AMD.

×