ÌÇÐÄvlog

Object moved to here.

The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review | Oncology | JAMA Oncology | ÌÇÐÄvlog

ÌÇÐÄvlog

[Skip to Navigation]
Sign In
1.
Kurland ÌýBF, Gerstner ÌýER, Mountz ÌýJM, Ìýet al. ÌýPromise and pitfalls of quantitative imaging in oncology clinical trials.ÌýÌýMagn Reson Imaging. 2012;30(9):1301-1312.
2.
Buckler ÌýAJ, Bresolin ÌýL, Dunnick ÌýNR, Sullivan ÌýDC. ÌýA collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2011;258(3):906-914.
3.
Pirker ÌýR, Pereira ÌýJR, Szczesna ÌýA, Ìýet al; FLEX Study Team. ÌýCetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial.ÌýÌý³¢²¹²Ô³¦±ð³Ù. 2009;373(9674):1525-1531.
4.
Lynch ÌýTJ, Patel ÌýT, Dreisbach ÌýL, Ìýet al. ÌýCetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099.ÌýÌýJ Clin Oncol. 2010;28(6):911-917.
5.
Khambata-Ford ÌýS, Harbison ÌýCT, Hart ÌýLL, Ìýet al. ÌýAnalysis of potential predictive markers of cetuximab benefit in BMS099, a phase III study of cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer.ÌýÌýJ Clin Oncol. 2010;28(6):918-927.
6.
Hirsch ÌýFR, Herbst ÌýRS, Olsen ÌýC, Ìýet al. ÌýIncreased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy.ÌýÌýJ Clin Oncol. 2008;26(20):3351-3357.
7.
Gerlinger ÌýM, Rowan ÌýAJ, Horswell ÌýS, Ìýet al. ÌýIntratumor heterogeneity and branched evolution revealed by multiregion sequencing.ÌýÌýN Engl J Med. 2012;366(10):883-892.
8.
Gerlinger ÌýM, Swanton ÌýC. ÌýHow Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine.ÌýÌýBr J Cancer. 2010;103(8):1139-1143.
9.
Gillies ÌýRJ, Kinahan ÌýPE, Hricak ÌýH. ÌýRadiomics: images are more than pictures, they are data.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2016;278(2):563-577.
10.
Therasse ÌýP, Arbuck ÌýSG, Eisenhauer ÌýEA, Ìýet al. ÌýNew guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada.ÌýÌýJ Natl Cancer Inst. 2000;92(3):205-216.
11.
Jaffe ÌýCC. ÌýMeasures of response: RECIST, WHO, and new alternatives.ÌýÌýJ Clin Oncol. 2006;24(20):3245-3251.
12.
World Health Organization. ÌýHandbook for Reporting Results of Cancer Treatment. Geneva, Switzerland: World Health Organization; 1979.
13.
Zhao ÌýB, Oxnard ÌýGR, Moskowitz ÌýCS, Ìýet al. ÌýA pilot study of volume measurement as a method of tumor response evaluation to aid biomarker development.ÌýÌýClin Cancer Res. 2010;16(18):4647-4653.
14.
Zhao ÌýB, James ÌýLP, Moskowitz ÌýCS, Ìýet al. ÌýEvaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2009;252(1):263-272.
15.
Lambin ÌýP, Rios-Velazquez ÌýE, Leijenaar ÌýR, Ìýet al. ÌýRadiomics: extracting more information from medical images using advanced feature analysis.ÌýÌýEur J Cancer. 2012;48(4):441-446.
16.
Aerts ÌýHJWL, Velazquez ÌýER, Leijenaar ÌýRTH, Ìýet al. ÌýDecoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.ÌýÌýNat Commun. 2014;5:4006.
17.
Kumar ÌýV, Gu ÌýY, Basu ÌýS, Ìýet al. ÌýRadiomics: the process and the challenges.ÌýÌýMagn Reson Imaging. 2012;30(9):1234-1248.
18.
Clarke ÌýLP, Nordstrom ÌýRJ, Zhang ÌýH, Ìýet al. ÌýThe Quantitative Imaging Network: NCI’s historical perspective and planned goals.ÌýÌýTransl Oncol. 2014;7(1):1-4.
19.
Buckler ÌýAJ, Bresolin ÌýL, Dunnick ÌýNR, Ìýet al. ÌýQuantitative imaging test approval and biomarker qualification: interrelated but distinct activities.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2011;259(3):875-884.
20.
Nishino ÌýM, Guo ÌýM, Jackman ÌýDM, Ìýet al. ÌýCT tumor volume measurement in advanced non-small-cell lung cancer: performance characteristics of an emerging clinical tool.ÌýÌýAcad Radiol. 2011;18(1):54-62.
21.
Nishino ÌýM, Dahlberg ÌýSE, Fulton ÌýLE, Ìýet al. ÌýVolumetric tumor response and progression in EGFR-mutant NSCLC patients treated with erlotinib or gefitinib.ÌýÌýAcad Radiol. 2016;23(3):329-336.
22.
Rios Velazquez ÌýE, Aerts ÌýHJWL, Gu ÌýY, Ìýet al. ÌýA semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen.ÌýÌýRadiother Oncol. 2012;105(2):167-173.
23.
Velazquez ÌýER, Parmar ÌýC, Jermoumi ÌýM, Ìýet al. ÌýVolumetric CT-based segmentation of NSCLC using 3D-Slicer.ÌýÌýSci Rep. 2013;3:3529.
24.
Giger ÌýML. ÌýUpdate on the potential of computer-aided diagnosis for breast cancer.ÌýÌýFuture Oncol. 2010;6(1):1-4.
25.
Doi ÌýK. ÌýComputer-aided diagnosis in medical imaging: historical review, current status and future potential.ÌýÌýComput Med Imaging Graph. 2007;31(4-5):198-211.
26.
Rios Velazquez ÌýE, Meier ÌýR, Dunn ÌýWD ÌýJr, Ìýet al. ÌýFully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features.ÌýÌýSci Rep. 2015;5:16822.
27.
Porz ÌýN, Bauer ÌýS, Pica ÌýA, Ìýet al. ÌýMulti-modal glioblastoma segmentation: man versus machine.ÌýÌýPLoS One. 2014;9(5):e96873.
28.
Lederlin ÌýM, Puderbach ÌýM, Muley ÌýT, Ìýet al. ÌýCorrelation of radio- and histomorphological pattern of pulmonary adenocarcinoma.ÌýÌýEur Respir J. 2013;41(4):943-951.
29.
Honda ÌýT, Kondo ÌýT, Murakami ÌýS, Ìýet al. ÌýRadiographic and pathological analysis of small lung adenocarcinoma using the new IASLC classification.ÌýÌýClin Radiol. 2013;68(1):e21-e26.
30.
Hashizume ÌýT, Yamada ÌýK, Okamoto ÌýN, Ìýet al. ÌýPrognostic significance of thin-section CT scan findings in small-sized lung adenocarcinoma.ÌýÌý°ä³ó±ð²õ³Ù. 2008;133(2):441-447.
31.
Aoki ÌýT, Tomoda ÌýY, Watanabe ÌýH, Ìýet al. ÌýPeripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2001;220(3):803-809.
32.
Lee ÌýHY, Lee ÌýKS. ÌýGround-glass opacity nodules: histopathology, imaging evaluation, and clinical implications.ÌýÌýJ Thorac Imaging. 2011;26(2):106-118.
33.
Wang ÌýH, Schabath ÌýMB, Liu ÌýY, Ìýet al. ÌýSemiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival.ÌýÌýClin Lung Cancer. 2015;16(6):e141-e163.
34.
Takashima ÌýS, Maruyama ÌýY, Hasegawa ÌýM, Saito ÌýA, Haniuda ÌýM, Kadoya ÌýM. ÌýHigh-resolution CT features: prognostic significance in peripheral lung adenocarcinoma with bronchioloalveolar carcinoma components.ÌýÌý¸é±ð²õ±è¾±°ù²¹³Ù¾±´Ç²Ô. 2003;70(1):36-42.
35.
Takashima ÌýS, Maruyama ÌýY, Hasegawa ÌýM, Ìýet al. ÌýPrognostic significance of high-resolution CT findings in small peripheral adenocarcinoma of the lung: a retrospective study on 64 patients.ÌýÌýLung Cancer. 2002;36(3):289-295.
36.
VASARI feature set. . Accessed January 10, 2016.
37.
Zinn ÌýPO, Mahajan ÌýB, Sathyan ÌýP, Ìýet al. ÌýRadiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme.ÌýÌýPLoS One. 2011;6(10):e25451.
38.
Opulencia ÌýP, Channin ÌýDS, Raicu ÌýDS, Furst ÌýJD. ÌýMapping LIDC, RadLexâ„¢, and lung nodule image features.ÌýÌýJ Digit Imaging. 2011;24(2):256-270.
39.
Gutman ÌýDA, Cooper ÌýLAD, Hwang ÌýSN, Ìýet al. ÌýMR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2013;267(2):560-569.
40.
Diehn ÌýM, Nardini ÌýC, Wang ÌýDS, Ìýet al. ÌýIdentification of noninvasive imaging surrogates for brain tumor gene-expression modules.ÌýÌýProc Natl Acad Sci U S A. 2008;105(13):5213-5218.
41.
Naeini ÌýKM, Pope ÌýWB, Cloughesy ÌýTF, Ìýet al. ÌýIdentifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images.ÌýÌýNeuro Oncol. 2013;15(5):626-634.
42.
Pope ÌýWB, Chen ÌýJH, Dong ÌýJ, Ìýet al. ÌýRelationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2008;249(1):268-277.
43.
Gutman ÌýDA, Dunn ÌýWD ÌýJr, Grossmann ÌýP, Ìýet al. ÌýSomatic mutations associated with MRI-derived volumetric features in glioblastoma.ÌýÌý±·±ð³Ü°ù´Ç°ù²¹»å¾±´Ç±ô´Ç²µ²â. 2015;57(12):1227-1237.
44.
Tixier ÌýF, Hatt ÌýM, Valla ÌýC, Ìýet al. ÌýVisual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer.ÌýÌýJ Nucl Med. 2014;55(8):1235-1241.
45.
Wetzel ÌýSG, Cha ÌýS, Johnson ÌýG, Ìýet al. ÌýRelative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2002;224(3):797-803.
46.
Haralick ÌýRM, Shanmugam ÌýK, Its’Hak ÌýD. ÌýTextural features for image classification.ÌýÌýIEEE Trans Syst Man Cybern. 1973;3(6):610-621.
47.
Galloway ÌýMM. ÌýTexture analysis using gray level run lengths.ÌýÌýComput Graph Image Process. 1975;4(2):172-179.
48.
Thibault ÌýG, Guillaume ÌýT, Bernard ÌýF, Ìýet al. ÌýShape and texture indexes application to cell nuclei classification.ÌýÌýInt J Pattern Recognit Artif Intell. 2013;27(1):1357002.
49.
Coroller ÌýTP, Grossmann ÌýP, Hou ÌýY, Ìýet al. ÌýCT-based radiomic signature predicts distant metastasis in lung adenocarcinoma.ÌýÌýRadiother Oncol. 2015;114(3):345-350.
50.
Cunliffe ÌýA, Armato ÌýSG ÌýIII, Castillo ÌýR, Pham ÌýN, Guerrero ÌýT, Al-Hallaq ÌýHA. ÌýLung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development.ÌýÌýInt J Radiat Oncol Biol Phys. 2015;91(5):1048-1056.
51.
Parmar ÌýC, Leijenaar ÌýRTH, Grossmann ÌýP, Ìýet al. ÌýRadiomic feature clusters and prognostic signatures specific for lung and head & neck cancer.ÌýÌýSci Rep. 2015;5:11044.
52.
Hatt ÌýM, Majdoub ÌýM, Vallières ÌýM, Ìýet al. Ìý18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort.ÌýÌýJ Nucl Med. 2015;56(1):38-44.
53.
Yang ÌýF, Thomas ÌýMA, Dehdashti ÌýF, Grigsby ÌýPW. ÌýTemporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer.ÌýÌýEur J Nucl Med Mol Imaging. 2013;40(5):716-727.
54.
El Naqa ÌýI, Grigsby ÌýP, Apte ÌýA, Ìýet al. ÌýExploring feature-based approaches in PET images for predicting cancer treatment outcomes.ÌýÌýPattern Recognit. 2009;42(6):1162-1171.
55.
Gevaert ÌýO, Mitchell ÌýLA, Achrol ÌýAS, Ìýet al. ÌýGlioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2015;276(1):313.
56.
Upadhaya ÌýT, Taman ÌýU, Yannick ÌýM, Eric ÌýS, Le Reste ÌýP-J, Mathieu ÌýE. Prognostic value of multimodal MRI tumor features in glioblastoma multiforme using textural features analysis. In: ÌýProceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging. New York, NY: IEEE; 2015:50-54.
57.
Chang ÌýP, Schwartz ÌýL. Fully automated quantitative scoring of vasari glioma imaging features. Paper presented at: SIIM 2015; May 30, 2015; Washington, DC.
58.
Yanagawa ÌýM, Tanaka ÌýY, Kusumoto ÌýM, Ìýet al. ÌýAutomated assessment of malignant degree of small peripheral adenocarcinomas using volumetric CT data: correlation with pathologic prognostic factors.ÌýÌýLung Cancer. 2010;70(3):286-294.
59.
Gimenez ÌýF, Xu ÌýJ, Liu ÌýY, Ìýet al. ÌýAutomatic annotation of radiological observations in liver CT images.ÌýÌýAMIA Annu Symp Proc. 2012;2012:257-263.
60.
Parmar ÌýC, Grossmann ÌýP, Bussink ÌýJ, Lambin ÌýP, Aerts ÌýHJWL. ÌýMachine learning methods for quantitative radiomic biomarkers.ÌýÌýSci Rep. 2015;5:13087.
61.
Parmar ÌýC, Grossmann ÌýP, Rietveld ÌýD, Rietbergen ÌýMM, Lambin ÌýP, Aerts ÌýHJW. ÌýRadiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer.ÌýÌýFront Oncol. 2015;5:272.
62.
Hong ÌýSJ, Kim ÌýTJ, Choi ÌýYW, Park ÌýJ-S, Chung ÌýJ-H, Lee ÌýKW. ÌýRadiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes [published online January 19, 2016].ÌýÌýEur Radiol. doi:.
63.
Hsu ÌýJ-S, Huang ÌýMS, Chen ÌýCY, Ìýet al. ÌýCorrelation between EGFR mutation status and computed tomography features in patients with advanced pulmonary adenocarcinoma.ÌýÌýJ Thorac Imaging. 2014;29(6):357-363.
64.
Liu ÌýY, Kim ÌýJ, Balagurunathan ÌýY, Ìýet al. ÌýRadiomic features are associated with EGFR mutation status in lung adenocarcinomas [published online February 16, 2016].ÌýÌýClin Lung Cancer. doi:.
65.
Freer ÌýTW, Ulissey ÌýMJ. ÌýScreening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2001;220(3):781-786.
66.
Feig ÌýSA, Sickles ÌýEA, Evans ÌýWP, Linver ÌýMN. ÌýRe: Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system.ÌýÌýJ Natl Cancer Inst. 2004;96(16):1260-1261.
67.
Birdwell ÌýRL, Bandodkar ÌýP, Ikeda ÌýDM. ÌýComputer-aided detection with screening mammography in a university hospital setting.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2005;236(2):451-457.
68.
Cupples ÌýTE, Cunningham ÌýJE, Reynolds ÌýJC. ÌýImpact of computer-aided detection in a regional screening mammography program.ÌýÌýAJR Am J Roentgenol. 2005;185(4):944-950.
69.
Morton ÌýMJ, Whaley ÌýDH, Brandt ÌýKR, Amrami ÌýKK. ÌýScreening mammograms: interpretation with computer-aided detection–prospective evaluation.ÌýÌý¸é²¹»å¾±´Ç±ô´Ç²µ²â. 2006;239(2):375-383.
70.
Xu ÌýXW, Doi ÌýK, Kobayashi ÌýT, MacMahon ÌýH, Giger ÌýML. ÌýDevelopment of an improved CAD scheme for automated detection of lung nodules in digital chest images.ÌýÌýMed Phys. 1997;24(9):1395-1403.
71.
Shiraishi ÌýJ, Li ÌýQ, Suzuki ÌýK, Engelmann ÌýR, Doi ÌýK. ÌýComputer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification.ÌýÌýMed Phys. 2006;33(7):2642-2653.
72.
Chan ÌýHP, Doi ÌýK, Vyborny ÌýCJ, Ìýet al. ÌýImprovement in radiologists’ detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis.ÌýÌýInvest Radiol. 1990;25(10):1102-1110.
73.
Yin ÌýFF, Giger ÌýML, Vyborny ÌýCJ, Doi ÌýK, Schmidt ÌýRA. ÌýComparison of bilateral-subtraction and single-image processing techniques in the computerized detection of mammographic masses.ÌýÌýInvest Radiol. 1993;28(6):473-481.
74.
Arimura ÌýH, Katsuragawa ÌýS, Suzuki ÌýK, Ìýet al. ÌýComputerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening.ÌýÌýAcad Radiol. 2004;11(6):617-629.
75.
Beyer ÌýF, Zierott ÌýL, Fallenberg ÌýEM, Ìýet al. ÌýComparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader.ÌýÌýEur Radiol. 2007;17(11):2941-2947.
76.
Perry ÌýN, Puthaar ÌýE. ÌýEuropean Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. Luxembourg City, Luxembourg: Office for Official Publications of the European Union; 2013.
77.
Wood ÌýDE, Kazerooni ÌýE, Baum ÌýSL, Ìýet al; National Comprehension Cancer Network. ÌýLung cancer screening, version 1.2015: featured updates to the NCCN guidelines.ÌýÌýJ Natl Compr Canc Netw. 2015;13(1):23-34.
Views 4,014
Review
¶Ù±ð³¦±ð³¾²ú±ð°ùÌý2016

The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review

Author Affiliations
  • 1Departments of Radiation Oncology and Radiology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
JAMA Oncol. 2016;2(12):1636-1642. doi:10.1001/jamaoncol.2016.2631
Abstract

ImportanceÌý Advances in genomics have led to the recognition that tumors are populated by distinct genotypic subgroups that drive tumor development and progression. The spatial and temporal heterogeneity of solid tumors has been a critical barrier to the development of precision medicine approaches because the standard approach to tumor sampling, often invasive needle biopsy, is unable to fully capture the spatial state of the tumor. Image-based phenotyping, which represents quantification of the tumor phenotype through medical imaging, is a promising development for precision medicine.

ObservationsÌý Medical imaging can provide a comprehensive macroscopic picture of the tumor phenotype and its environment that is ideally suited to quantifying the development of the tumor phenotype before, during, and after treatment. As a noninvasive technique, medical imaging can be performed at low risk and inconvenience to the patient. The semantic features approach to tumor phenotyping, accomplished by visual assessment of radiologists, is compared with a computational radiomics approach that relies on automated processing of imaging assays. Together, these approaches capture important information for diagnostic, prognostic, and predictive purposes.

Conclusions and RelevanceÌý Although imaging technology is already embedded in clinical practice for diagnosis, staging, treatment planning, and response assessment, the transition of these computational methods to the clinic has been surprisingly slow. This review outlines the promise of these novel technologies for precision medicine and the obstacles to clinical application.

×