糖心vlog

Object moved to here.

Gene Expression Profiling in Pediatric Appendicitis | Emergency Medicine | JAMA Pediatrics | 糖心vlog

糖心vlog

[Skip to Navigation]
Sign In
1.
Addiss 听DG锘, Shaffer 听N锘, Fowler 听BS锘, Tauxe 听RV锘. 听The epidemiology of appendicitis and appendectomy in the United States.听锘 听Am J Epidemiol. 1990;132(5):910-925. doi:锘
2.
Scholer 听SJ锘, Pituch 听K锘, Orr 听DP锘, Dittus 听RS锘. 听Clinical outcomes of children with acute abdominal pain.听锘 听笔别诲颈补迟谤颈肠蝉. 1996;98(4, pt 1):680-685. doi:锘
3.
Bundy 听DG锘, Byerley 听JS锘, Liles 听EA锘, Perrin 听EM锘, Katznelson 听J锘, Rice 听HE锘. 听Does this child have appendicitis?听锘 听闯础惭础. 2007;298(4):438-451. doi:锘
4.
Aarabi 听S锘, Sidhwa 听F锘, Riehle 听KJ锘, Chen 听Q锘, Mooney 听DP锘. 听Pediatric appendicitis in New England: epidemiology and outcomes.听锘 听J Pediatr Surg. 2011;46(6):1106-1114. doi:锘
5.
Howell 听EC锘, Dubina 听ED锘, Lee 听SL锘. 听Perforation risk in pediatric appendicitis: assessment and management.听锘 听Pediatric Health Med Ther. 2018;9:135-145. doi:
6.
Almaramhy 听HH锘. 听Acute appendicitis in young children less than 5 years: review article.听锘 听Ital J Pediatr. 2017;43(1):15. doi:锘
7.
Willis 听ZI锘, Duggan 听EM锘, Bucher 听BT锘, 听et al. 听Effect of a clinical practice guideline for pediatric complicated appendicitis.听锘 听闯础惭础 Surg. 2016;151(5):e160194. doi:锘
8.
Bonadio 听W锘, Rebillot 听K锘, Ukwuoma 听O锘, Saracino 听C锘, Iskhakov 听A锘. 听Management of pediatric perforated appendicitis: comparing outcomes using early appendectomy versus solely medical management.听锘 听Pediatr Infect Dis J. 2017;36(10):937-941. doi:锘
9.
Thompson 听GC锘, Schuh 听S锘, Gravel 听J锘, 听et al; Pediatric Emergency Research Canada. 听Variation in the diagnosis and management of appendicitis at Canadian pediatric hospitals.听锘 听Acad Emerg Med. 2015;22(7):811-822. doi:锘
10.
Vissers 听RJ锘, Lennarz 听WB锘. 听Pitfalls in appendicitis.听锘 听Emerg Med Clin North Am. 2010;28(1):103-118, viii. doi:锘
11.
Alvarado 听A锘. 听A practical score for the early diagnosis of acute appendicitis.听锘 听Ann Emerg Med. 1986;15(5):557-564. doi:锘
12.
Samuel 听M锘. 听Pediatric Appendicitis Score.听锘 听J Pediatr Surg. 2002;37(6):877-881. doi:锘
13.
Schellekens 听DHSM锘, Hulsew茅 听KWE锘, van Acker 听BAC锘, 听et al. 听Evaluation of the diagnostic accuracy of plasma markers for early diagnosis in patients suspected for acute appendicitis.听锘 听Acad Emerg Med. 2013;20(7):703-710. doi:锘
14.
Khanafer 听I锘, Martin 听DA锘, Mitra 听TP锘, 听et al. 听Test characteristics of common appendicitis scores with and without laboratory investigations: a prospective observational study.听锘 听BMC Pediatr. 2016;16(1):147. doi:锘
15.
Hodge 听SV锘, Mickiewicz 听B锘, Lau 听M锘, Jenne 听CN锘, Thompson 听GC锘. 听Novel molecular biomarkers and diagnosis of acute appendicitis in children.听锘 听Biomark Med. 2021;15(12):1055-1065. doi:锘
16.
Rivera-Chavez 听FA锘, Peters-Hybki 听DL锘, Barber 听RC锘, 听et al. 听Innate immunity genes influence the severity of acute appendicitis.听锘 听Ann Surg. 2004;240(2):269-277. doi:锘
17.
Rub茅r 听M锘, Berg 听A锘, Ekerfelt 听C锘, Olaison 听G锘, Andersson 听RE锘. 听Different cytokine profiles in patients with a history of gangrenous or phlegmonous appendicitis.听锘 听Clin Exp Immunol. 2006;143(1):117-124. doi:锘
18.
Murphy 听CG锘, Glickman 听JN锘, Tomczak 听K锘, 听et al. 听Acute appendicitis is characterized by a uniform and highly selective pattern of inflammatory gene expression.听锘 听Mucosal Immunol. 2008;1(4):297-308. doi:锘
19.
Peeters 听T锘, Martens 听S锘, D鈥橭nofrio 听V锘, 听et al. 听An observational study of innate immune responses in patients with acute appendicitis.听锘 听Sci Rep. 2020;10(1):17352. doi:锘
20.
Baghela 听A锘, Pena 听OM锘, Lee 听AH锘, 听et al. 听Predicting sepsis severity at first clinical presentation: the role of endotypes and mechanistic signatures.听锘 听贰叠颈辞惭别诲颈肠颈苍别. 2022;75:103776. doi:
21.
Ewels 听P锘, Magnusson 听M锘, Lundin 听S锘, K盲ller 听M锘. 听MultiQC: summarize analysis results for multiple tools and samples in a single report.听锘 听叠颈辞颈苍蹿辞谤尘补迟颈肠蝉. 2016;32(19):3047-3048. doi:锘
22.
Dobin 听A锘, Davis 听CA锘, Schlesinger 听F锘, 听et al. 听STAR: ultrafast universal RNA-seq aligner.听锘 听叠颈辞颈苍蹿辞谤尘补迟颈肠蝉. 2013;29(1):15-21. doi:锘
23.
Anders 听S锘, Pyl 听PT锘, Huber 听W锘. 听HTSeq鈥揳 Python framework to work with high-throughput sequencing data.听锘 听叠颈辞颈苍蹿辞谤尘补迟颈肠蝉. 2015;31(2):166-169. doi:锘
24.
Love 听M锘, Anders 听S锘, Huber 听W锘. 听Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.听锘 听Genome Biol. 2014;15(550). doi:
25.
Foroushani 听AB锘, Brinkman 听FS锘, Lynn 听DJ锘. 听Pathway-GPS and sigora: identifying relevant pathways based on the over-representation of their gene-pair signatures.听锘 听笔别别谤闯. 2013;1:e229. doi:
26.
Croft 听D锘, Mundo 听AF锘, Haw 听R锘, 听et al. 听The reactome pathway knowledgebase.听锘 听Nucleic Acids Res. 2020;48(D1):D489-D503.
27.
Ritchie 听ME锘, Phipson 听B锘, Wu 听D锘, 听et al. 听limma powers differential expression analyses for RNA-sequencing and microarray studies.听锘 听Nucleic Acids Res. 2015;43(7):e47. doi:锘
28.
Greer 听JP锘. 听Wintrobe鈥檚 Clinical Hematology. Vol 1. Lippincott Williams & Wilkins; 2009.
29.
Lacy 听P锘. 听Mechanisms of degranulation in neutrophils.听锘 听Allergy Asthma Clin Immunol. 2006;2(3):98-108. doi:锘
30.
Nguyen 听DH锘, Hurtado-Ziola 听N锘, Gagneux 听P锘, Varki 听A锘. 听Loss of Siglec expression on T lymphocytes during human evolution.听锘 听Proc Natl Acad Sci U S A. 2006;103(20):7765-7770. doi:锘
31.
Ikehara 听Y锘, Ikehara 听SK锘, Paulson 听JC锘. 听Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9.听锘 听J Biol Chem. 2004;279(41):43117-43125. doi:锘
32.
Stanko 听K锘, Iwert 听C锘, Appelt 听C锘, 听et al. 听CD96 expression determines the inflammatory potential of IL-9-producing Th9 cells.听锘 听Proc Natl Acad Sci U S A. 2018;115(13):E2940-E2949. doi:锘
33.
Pena 听OM锘, Hancock 听DG锘, Lyle 听NH锘, 听et al. 听An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial clinical presentation.听锘 听贰叠颈辞惭别诲颈肠颈苍别. 2014;1(1):64-71. doi:锘
34.
Del Prete 听A锘, Mart铆nez-Mu帽oz 听L锘, Mazzon 听C锘, 听et al. 听The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage.听锘 听叠濒辞辞诲. 2017;130(10):1223-1234. doi:锘
35.
Groom 听JR锘, Luster 听AD锘. 听CXCR3 in T cell function.听锘 听Exp Cell Res. 2011;317(5):620-631. doi:锘
36.
Chevalier 听N锘, Jarrossay 听D锘, Ho 听E锘, 听et al. 听CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses.听锘 听J Immunol. 2011;186(10):5556-5568. doi:锘
37.
Paust 听S锘, Gill 听HS锘, Wang 听BZ锘, 听et al. 听Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses.听锘 听Nat Immunol. 2010;11(12):1127-1135. doi:锘
38.
Comerford 听I锘, Harata-Lee 听Y锘, Bunting 听MD锘, Gregor 听C锘, Kara 听EE锘, McColl 听SR锘. 听A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system.听锘 听Cytokine Growth Factor Rev. 2013;24(3):269-283. doi:锘
39.
Nanki 听T锘, Shimaoka 听T锘, Hayashida 听K锘, Taniguchi 听K锘, Yonehara 听S锘, Miyasaka 听N锘. 听Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis.听锘 听Arthritis Rheum. 2005;52(10):3004-3014. doi:锘
40.
Lehrke 听M锘, Millington 听SC锘, Lefterova 听M锘, 听et al. 听CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans.听锘 听J Am Coll Cardiol. 2007;49(4):442-449. doi:锘
41.
Izquierdo 听MC锘, Martin-Cleary 听C锘, Fernandez-Fernandez 听B锘, 听et al. 听CXCL16 in kidney and cardiovascular injury.听锘 听Cytokine Growth Factor Rev. 2014;25(3):317-325. doi:锘
42.
Xia 听Y锘, Entman 听ML锘, Wang 听Y锘. 听Critical role of CXCL16 in hypertensive kidney injury and fibrosis.听锘 听贬测辫别谤迟别苍蝉颈辞苍. 2013;62(6):1129-1137. doi:锘
43.
Cummings 听CJ锘, Martin 听TR锘, Frevert 听CW锘, 听et al. 听Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis.听锘 听J Immunol. 1999;162(4):2341-2346. doi:锘
44.
Singh 听S锘, Nannuru 听KC锘, Sadanandam 听A锘, Varney 听ML锘, Singh 听RK锘. 听CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion.听锘 听Br J Cancer. 2009;100(10):1638-1646. doi:锘
45.
Teijeira 听脕锘, Garasa 听S锘, Gato 听M锘, 听et al. 听CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity.听锘 听滨尘尘耻苍颈迟测. 2020;52(5):856-871.e8. doi:锘
46.
Goksuluk 听D锘, Zararsiz 听G锘, Korkmaz 听S锘, 听et al. 听MLSeq: machine learning interface for RNA-sequencing data.听锘 听Comput Methods Programs Biomed. 2019;175:223-231. doi:锘
47.
Gu 听Z锘, Eils 听R锘, Schlesner 听M锘. 听Complex heatmaps reveal patterns and correlations in multidimensional genomic data.听锘 听叠颈辞颈苍蹿辞谤尘补迟颈肠蝉. 2016;32(18):2847-2849. doi:锘
48.
Lee 听AJ锘, Ashkar 听AA锘. 听The dual nature of type I and type II interferons.听锘 听Front Immunol. 2018;9:2061. doi:
49.
Huang 听Y锘, Wange 听RL锘. 听T cell receptor signaling: beyond complex complexes.听锘 听J Biol Chem. 2004;279(28):28827-28830. doi:锘
50.
Ono 听M锘, Yaguchi 听H锘, Ohkura 听N锘, 听et al. 听Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1.听锘 听狈补迟耻谤别. 2007;446(7136):685-689. doi:锘
51.
Jiang 听D锘, Liang 听J锘, Noble 听PW锘. 听Hyaluronan as an immune regulator in human diseases.听锘 听Physiol Rev. 2011;91(1):221-264. doi:锘
52.
Kuang 听DM锘, Wu 听Y锘, Chen 听N锘, Cheng 听J锘, Zhuang 听SM锘, Zheng 听L锘. 听Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes.听锘 听叠濒辞辞诲. 2007;110(2):587-595. doi:锘
53.
Mizrahy 听S锘, Raz 听SR锘, Hasgaard 听M锘, 听et al. 听Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response.听锘 听J Control Release. 2011;156(2):231-238. doi:锘
54.
Hallan 听S锘, 脜sberg 听A锘. 听The accuracy of C-reactive protein in diagnosing acute appendicitis鈥揳 meta-analysis.听锘 听Scand J Clin Lab Invest. 1997;57(5):373-380. doi:锘
55.
Ohle 听R锘, O鈥橰eilly 听F锘, O鈥橞rien 听KK锘, Fahey 听T锘, Dimitrov 听BD锘. 听The Alvarado score for predicting acute appendicitis: a systematic review.听锘 听BMC Med. 2011;9(1):139. doi:锘
56.
Pogoreli膰 听Z锘, Rak 听S锘, Mrkli膰 听I锘, Juri膰 听I锘. 听Prospective validation of Alvarado score and Pediatric Appendicitis Score for the diagnosis of acute appendicitis in children.听锘 听Pediatr Emerg Care. 2015;31(3):164-168. doi:锘
57.
Macco 听S锘, Vrouenraets 听BC锘, de Castro 听SMM锘. 听Evaluation of scoring systems in predicting acute appendicitis in children.听锘 听厂耻谤驳别谤测. 2016;160(6):1599-1604. doi:锘
58.
Bealer 听JF锘, Colgin 听M锘. 听S100A8/A9: a potential new diagnostic aid for acute appendicitis.听锘 听Acad Emerg Med. 2010;17(3):333-336. doi:锘
59.
Foell 听D锘, Kucharzik 听T锘, Kraft 听M锘, 听et al. 听Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease.听锘 听骋耻迟. 2003;52(6):847-853. doi:锘
60.
Zhang 听Y锘, Yang 听X锘, Zhu 听XL锘, 听et al. 听S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma.听锘 听Aging (Albany NY). 2021;13(11):15459-15478. doi:锘
61.
Pietzsch 听J锘, Hoppmann 听S锘. 听Human S100A12: a novel key player in inflammation?听锘 听Amino Acids. 2009;36(3):381-389. doi:锘
62.
Kutasy 听B锘, Puri 听P锘. 听Appendicitis in obese children.听锘 听Pediatr Surg Int. 2013;29(6):537-544. doi:锘
63.
Blanco 听FC锘, Sandler 听AD锘, Nadler 听EP锘. 听Increased incidence of perforated appendicitis in children with obesity.听锘 听Clin Pediatr (Phila). 2012;51(10):928-932. doi:锘
64.
Kakar 听M锘, Delorme 听M锘, Broks 听R锘, 听et al. 听Determining acute complicated and uncomplicated appendicitis using serum and urine biomarkers: interleukin-6 and neutrophil gelatinase-associated lipocalin.听锘 听Pediatr Surg Int. 2020;36(5):629-636. doi:锘
Views 2,008
Original Investigation
Translational Science
February 19, 2024

Gene Expression Profiling in Pediatric Appendicitis

Author Affiliations
  • 1Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
  • 2Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • 3Alberta Children鈥檚 Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
  • 4Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • 5Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
  • 6Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
  • 7Department of Molecular Biology & Biochemistry, Simon Fraser University, British Columbia, Canada
JAMA Pediatr. 2024;178(4):391-400. doi:10.1001/jamapediatrics.2023.6721
Key Points

QuestionWhat blood-based mechanistic changes distinguish pediatric patients with perforated appendicitis (PA) from those with simple appendicitis on presentation to the emergency department?

FindingsThis diagnostic study of 71 patients with pediatric appendicitis using systems immunology methods revealed a mechanistic understanding of severe disease, wherein a central role of immune dysregulation was observed with similarities to the mechanisms underlying sepsis. A blood-based gene expression signature of PA was also derived, providing a potential diagnostic for pediatric PA.

MeaningDevelopment of early diagnostics and management strategies for pediatric PA should be informed by underlying immune dysregulation and similarities to sepsis.

Abstract

ImportanceAppendicitis is the most common indication for urgent surgery in the pediatric population, presenting across a range of severity and with variable complications. Differentiating simple appendicitis (SA) and perforated appendicitis (PA) on presentation may help direct further diagnostic workup and appropriate therapy selection, including antibiotic choice and timing of surgery.

ObjectiveTo provide a mechanistic understanding of the differences in disease severity of appendicitis with the objective of developing improved diagnostics and treatments, specifically for the pediatric population.

Design, Setting, and ParticipantsThe Gene Expression Profiling of Pediatric Appendicitis (GEPPA) study was a single-center prospective exploratory diagnostic study with transcriptomic profiling of peripheral blood collected from a cohort of children aged 5 to 17 years with abdominal pain and suspected appendicitis between November 2016 and April 2017 at the Alberta Children鈥檚 Hospital in Calgary, Alberta, Canada, with data analysis reported in August 2023. There was no patient follow-up in this study.

ExposureSA, PA, or nonappendicitis abdominal pain.

Main Outcomes and MeasuresBlood transcriptomics was used to develop a hypothesis of underlying mechanistic differences between SA and PA to build mechanistic hypotheses and blood-based diagnostics.

ResultsSeventy-one children (mean [SD] age, 11.8 [3.0] years; 48 [67.6%] male) presenting to the emergency department with abdominal pain and suspected appendicitis were investigated using whole-blood transcriptomics. A central role for immune system pathways was revealed in PA, including a dampening of major innate interferon responses. Gene expression changes in patients with PA were consistent with downregulation of immune response and inflammation pathways and shared similarities with gene expression signatures derived from patients with sepsis, including the most severe sepsis endotypes. Despite the challenges in identifying early biomarkers of severe appendicitis, a 4-gene signature that was predictive of PA compared to SA, with an accuracy of 85.7% (95% CI, 72.8-94.1) was identified.

ConclusionsThis study found that PA was complicated by a dysregulated immune response. This finding should inform improved diagnostics of severity, early management strategies, and prevention of further postsurgical complications.

×