ÌÇÐÄvlog

Object moved to here.

Sodium-Glucose Cotransporter-2 Inhibitors vs Sulfonylureas for Gout Prevention Among Patients With Type 2 Diabetes Receiving Metformin | Diabetes | JAMA Internal Medicine | ÌÇÐÄvlog

ÌÇÐÄvlog

[Skip to Navigation]
Sign In
1.
Xia ÌýY, Wu ÌýQ, Wang ÌýH, Ìýet al. ÌýGlobal, regional and national burden of gout, 1990-2017: a systematic analysis of the Global Burden of Disease Study.Ìý ÌýRheumatology (Oxford). 2020;59(7):1529-1538. doi:
2.
Safiri ÌýS, Kolahi ÌýAA, Cross ÌýM, Ìýet al. ÌýPrevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017.Ìý ÌýArthritis Rheumatol. 2020;72(11):1916-1927. doi:
3.
Zhu ÌýY, Pandya ÌýBJ, Choi ÌýHK. ÌýComorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008.Ìý ÌýAm J Med. 2012;125(7):679-687.e1. doi:
4.
Kuo ÌýCF, Grainge ÌýMJ, Mallen ÌýC, Zhang ÌýW, Doherty ÌýM. ÌýComorbidities in patients with gout prior to and following diagnosis: case-control study.Ìý ÌýAnn Rheum Dis. 2016;75(1):210-217. doi:
5.
Elfishawi ÌýMM, Zleik ÌýN, Kvrgic ÌýZ, Ìýet al. ÌýThe rising incidence of gout and the increasing burden of comorbidities: a population-based study over 20 years.Ìý ÌýJ Rheumatol. 2018;45(4):574-579. doi:
6.
Choi ÌýHK, Curhan ÌýG. ÌýIndependent impact of gout on mortality and risk for coronary heart disease.Ìý Ìý°ä¾±°ù³¦³Ü±ô²¹³Ù¾±´Ç²Ô. 2007;116(8):894-900. doi:
7.
Abbott ÌýRD, Brand ÌýFN, Kannel ÌýWB, Castelli ÌýWP. ÌýGout and coronary heart disease: the Framingham Study.Ìý ÌýJ Clin Epidemiol. 1988;41(3):237-242. doi:
8.
Fisher ÌýMC, Rai ÌýSK, Lu ÌýN, Zhang ÌýY, Choi ÌýHK. ÌýThe unclosing premature mortality gap in gout: a general population-based study.Ìý ÌýAnn Rheum Dis. 2017;76(7):1289-1294. doi:
9.
Cipolletta ÌýE, Tata ÌýLJ, Nakafero ÌýG, Avery ÌýAJ, Mamas ÌýMA, Abhishek ÌýA. ÌýAssociation between gout flare and subsequent cardiovascular events among patients with gout.Ìý Ìý´³´¡²Ñ´¡. 2022;328(5):440-450. doi:
10.
McCormick ÌýN, Lin ÌýK, Yokose ÌýC, Lu ÌýN, Zhang ÌýY, Choi ÌýHK. ÌýUnclosing premature mortality gap among gout patients in the US general population, independent of serum urate and atherosclerotic cardiovascular risk factors.Ìý [in-press]. ÌýArthritis Care Res (Hoboken). 2024;•••. doi:
11.
Kuo ÌýCF, See ÌýLC, Luo ÌýSF, Ìýet al. ÌýGout: an independent risk factor for all-cause and cardiovascular mortality.Ìý ÌýRheumatology (Oxford). 2010;49(1):141-146. doi:
12.
Choi ÌýHK, McCormick ÌýN, Yokose ÌýC. ÌýExcess comorbidities in gout: the causal paradigm and pleiotropic approaches to care.Ìý ÌýNat Rev Rheumatol. 2022;18(2):97-111. doi:
13.
Khunti ÌýK. ÌýSGLT2 inhibitors in people with and without T2DM.Ìý ÌýNat Rev Endocrinol. 2021;17(2):75-76. doi:
14.
Scheen ÌýAJ. ÌýSodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus.Ìý ÌýNat Rev Endocrinol. 2020;16(10):556-577. doi:
15.
Cherney ÌýDZ, Odutayo ÌýA, Aronson ÌýR, Ezekowitz ÌýJ, Parker ÌýJD. ÌýSodium glucose cotransporter-2 inhibition and cardiorenal protection: JACC review topic of the week.Ìý ÌýJ Am Coll Cardiol. 2019;74(20):2511-2524. doi:
16.
Zhao ÌýY, Xu ÌýL, Tian ÌýD, Ìýet al. ÌýEffects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials.Ìý ÌýDiabetes Obes Metab. 2018;20(2):458-462. doi:
17.
Hu ÌýX, Yang ÌýY, Hu ÌýX, Ìýet al. ÌýEffects of sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis.Ìý ÌýDiabetes Obes Metab. 2022;24(2):228-238. doi:
18.
Xin ÌýY, Guo ÌýY, Li ÌýY, Ma ÌýY, Li ÌýL, Jiang ÌýH. ÌýEffects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with an indirect comparison meta-analysis.Ìý ÌýSaudi J Biol Sci. 2019;26(2):421-426. doi:
19.
Yip ÌýASY, Leong ÌýS, Teo ÌýYH, Ìýet al. ÌýEffect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and meta-regression of 43 randomized controlled trials.Ìý ÌýTher Adv Chronic Dis. 2022;13:20406223221083509. doi:
20.
Dalbeth ÌýN, Phipps-Green ÌýA, Frampton ÌýC, Neogi ÌýT, Taylor ÌýWJ, Merriman ÌýTR. ÌýRelationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis.Ìý ÌýAnn Rheum Dis. 2018;77(7):1048-1052. doi:
21.
Kapetanovic ÌýMC, Nilsson ÌýP, Turesson ÌýC, Englund ÌýM, Dalbeth ÌýN, Jacobsson ÌýL. ÌýThe risk of clinically diagnosed gout by serum urate levels: results from 30 years follow-up of the Malmö Preventive Project cohort in southern Sweden.Ìý ÌýArthritis Res Ther. 2018;20(1):190. doi:
22.
Fralick ÌýM, Chen ÌýSK, Patorno ÌýE, Kim ÌýSC. ÌýAssessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: a population-based cohort study.Ìý ÌýAnn Intern Med. 2020;172(3):186-194. doi:
23.
Lund ÌýLC, Højlund ÌýM, Henriksen ÌýDP, Hallas ÌýJ, Kristensen ÌýKB. ÌýSodium-glucose cotransporter-2 inhibitors and the risk of gout: A Danish population based cohort study and symmetry analysis.Ìý ÌýPharmacoepidemiol Drug Saf. 2021;30(10):1391-1395. doi:
24.
Zhou ÌýJ, Liu ÌýX, Chou ÌýOH, Ìýet al. ÌýLower risk of gout in sodium glucose cotransporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP4) inhibitors in type-2 diabetes.Ìý ÌýRheumatology (Oxford). 2022;62(4):1501-1510. doi:
25.
Chung ÌýMC, Hung ÌýPH, Hsiao ÌýPJ, Ìýet al. ÌýAssociation of sodium-glucose transport protein 2 inhibitor use for type 2 diabetes and incidence of gout in Taiwan.Ìý Ìý´³´¡²Ñ´¡ Netw Open. 2021;4(11):e2135353. doi:
26.
Abrahami ÌýD, D’Andrea ÌýE, Yin ÌýH, Ìýet al. ÌýContemporary trends in the utilization of second-line pharmacological therapies for type 2 diabetes in the United States and the United Kingdom.Ìý ÌýDiabetes Obes Metab. 2023;25(10):2980-2988. doi:
27.
Carney ÌýG, Kim ÌýJD, O’Sullivan ÌýC, Ìýet al. ÌýTreatment pattern trends of medications for type 2 diabetes in British Columbia, Canada.Ìý Ìýµþ²Ñ´³ Open Diabetes Res Care. 2022;10(6):e002995. doi:
28.
Hernán ÌýMA, Robins ÌýJM. ÌýUsing big data to emulate a target trial when a randomized trial is not available.Ìý ÌýAm J Epidemiol. 2016;183(8):758-764. doi:
29.
Hernán ÌýMA, Wang ÌýW, Leaf ÌýDE. ÌýTarget trial emulation: a framework for causal inference from observational data.Ìý Ìý´³´¡²Ñ´¡. 2022;328(24):2446-2447. doi:
30.
Patorno ÌýE, Goldfine ÌýAB, Schneeweiss ÌýS, Ìýet al. ÌýCardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study.Ìý Ìýµþ²Ñ´³. 2018;360:k119. doi:
31.
Patorno ÌýE, Htoo ÌýPT, Glynn ÌýRJ, Ìýet al. ÌýSodium-glucose cotransporter-2 inhibitors versus glucagon-like peptide-1 receptor agonists and the risk for cardiovascular outcomes in routine care patients with diabetes across categories of cardiovascular disease.Ìý ÌýAnn Intern Med. 2021;174(11):1528-1541. doi:
32.
Patorno ÌýE, Pawar ÌýA, Franklin ÌýJM, Ìýet al. ÌýEmpagliflozin and the risk of heart failure hospitalization in routine clinical care.Ìý Ìý°ä¾±°ù³¦³Ü±ô²¹³Ù¾±´Ç²Ô. 2019;139(25):2822-2830. doi:
33.
Singh ÌýJA. ÌýVeterans Affairs databases are accurate for gout-related health care utilization: a validation study.Ìý ÌýArthritis Res Ther. 2013;15(6):R224. doi:
34.
Meier ÌýCR, Jick ÌýH. ÌýOmeprazole, other antiulcer drugs and newly diagnosed gout.Ìý ÌýBr J Clin Pharmacol. 1997;44(2):175-178. doi:
35.
MacFarlane ÌýLA, Liu ÌýCC, Solomon ÌýDH, Kim ÌýSC. ÌýValidation of claims-based algorithms for gout flares.Ìý ÌýPharmacoepidemiol Drug Saf. 2016;25(7):820-826. doi:
36.
Zheng ÌýC, Rashid ÌýN, Wu ÌýYL, Ìýet al. ÌýUsing natural language processing and machine learning to identify gout flares from electronic clinical notes.Ìý ÌýArthritis Care Res (Hoboken). 2014;66(11):1740-1748. doi:
37.
Rothenbacher ÌýD, Primatesta ÌýP, Ferreira ÌýA, Cea-Soriano ÌýL, Rodríguez ÌýLA. ÌýFrequency and risk factors of gout flares in a large population-based cohort of incident gout.Ìý ÌýRheumatology (Oxford). 2011;50(5):973-981. doi:
38.
Htoo ÌýPT, Tesfaye ÌýH, Schneeweiss ÌýS, Ìýet al. ÌýComparative effectiveness of empagliflozin vs liraglutide or sitagliptin in older adults with diverse patient characteristics.Ìý Ìý´³´¡²Ñ´¡ Netw Open. 2022;5(10):e2237606. doi:
39.
Patorno ÌýE, Pawar ÌýA, Bessette ÌýLG, Ìýet al. ÌýComparative effectiveness and safety of sodium-glucose cotransporter 2 inhibitors versus glucagon-like peptide 1 receptor agonists in older adults.Ìý ÌýDiabetes Care. 2021;44(3):826-835. doi:
40.
Zhuo ÌýM, D’Andrea ÌýE, Paik ÌýJM, Ìýet al. ÌýAssociation of sodium-glucose cotransporter-2 inhibitors with incident atrial fibrillation in older adults with type 2 diabetes.Ìý Ìý´³´¡²Ñ´¡ Netw Open. 2022;5(10):e2235995. doi:
41.
Li ÌýF, Thomas ÌýLE, Li ÌýF. ÌýAddressing extreme propensity scores via the overlap weights.Ìý ÌýAm J Epidemiol. 2019;188(1):250-257. doi:
42.
Thomas ÌýLE, Li ÌýF, Pencina ÌýMJ. ÌýOverlap weighting: a propensity score method that mimics attributes of a randomized clinical trial.Ìý Ìý´³´¡²Ñ´¡. 2020;323(23):2417-2418. doi:
43.
Fine ÌýJP, Gary ÌýRJ. ÌýA proportional hazards model for the subdistribution of a competing risk.Ìý ÌýJ Am Stat Assoc. 1999;94(446):496-509. doi:
44.
VanderWeele ÌýTJ, Ding ÌýP. ÌýSensitivity analysis in observational research: introducing the E-value.Ìý ÌýAnn Intern Med. 2017;167(4):268-274. doi:
45.
Packer ÌýM, Anker ÌýSD, Butler ÌýJ, Ìýet al; EMPEROR-Reduced Trial Investigators. ÌýCardiovascular and renal outcomes with empagliflozin in heart failure.Ìý ÌýN Engl J Med. 2020;383(15):1413-1424. doi:
46.
Anker ÌýSD, Butler ÌýJ, Filippatos ÌýG, Ìýet al; EMPEROR-Preserved Trial Investigators. ÌýEmpagliflozin in heart failure with a preserved ejection fraction.Ìý ÌýN Engl J Med. 2021;385(16):1451-1461. doi:
47.
McMurray ÌýJJV, Solomon ÌýSD, Inzucchi ÌýSE, Ìýet al; DAPA-HF Trial Committees and Investigators. ÌýDapagliflozin in patients with heart failure and reduced ejection fraction.Ìý ÌýN Engl J Med. 2019;381(21):1995-2008. doi:
48.
McCormick ÌýN, Yokose ÌýC, Wei ÌýJ, Ìýet al. ÌýComparative effectiveness of sodium-glucose cotransporter-2 inhibitors for recurrent gout flares and gout-primary emergency department visits and hospitalizations: a general population cohort study.Ìý ÌýAnn Intern Med. 2023;176(8):1067-1080. doi:
49.
Powell ÌýM, Clark ÌýC, Alyakin ÌýA, Vogelstein ÌýJT, Hart ÌýB. ÌýExploration of residual confounding in analyses of associations of metformin use and outcomes in adults with type 2 diabetes.Ìý Ìý´³´¡²Ñ´¡ Netw Open. 2022;5(11):e2241505. doi:
50.
Stamp ÌýLK, Frampton ÌýC, Morillon ÌýMB, Ìýet al. ÌýAssociation between serum urate and flares in people with gout and evidence for surrogate status: a secondary analysis of two randomised controlled trials.Ìý ÌýLancet Rheumatol. 2022;4(1):e53-e60. doi:
51.
Halpern ÌýR, Fuldeore ÌýMJ, Mody ÌýRR, Patel ÌýPA, Mikuls ÌýTR. ÌýThe effect of serum urate on gout flares and their associated costs: an administrative claims analysis.Ìý ÌýJ Clin Rheumatol. 2009;15(1):3-7. doi:
52.
Shiozawa ÌýA, Szabo ÌýSM, Bolzani ÌýA, Cheung ÌýA, Choi ÌýHK. ÌýSerum uric acid and the risk of incident and recurrent gout: a systematic review.Ìý ÌýJ Rheumatol. 2017;44(3):388-396. doi:
53.
Bailey ÌýCJ. ÌýUric acid and the cardio-renal effects of SGLT2 inhibitors.Ìý ÌýDiabetes Obes Metab. 2019;21(6):1291-1298. doi:
54.
Elrakaybi ÌýA, Laubner ÌýK, Zhou ÌýQ, Hug ÌýMJ, Seufert ÌýJ. ÌýCardiovascular protection by SGLT2 inhibitors—do anti-inflammatory mechanisms play a role?Ìý ÌýMol Metab. 2022;64:101549. doi:
55.
Heerspink ÌýHJL, Perco ÌýP, Mulder ÌýS, Ìýet al. ÌýCanagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.Ìý Ìý¶Ù¾±²¹²ú±ð³Ù´Ç±ô´Ç²µ¾±²¹. 2019;62(7):1154-1166. doi:
56.
Mancini ÌýSJ, Boyd ÌýD, Katwan ÌýOJ, Ìýet al. ÌýCanagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms.Ìý ÌýSci Rep. 2018;8(1):5276. doi:
57.
Maayah ÌýZH, Ferdaoussi ÌýM, Takahara ÌýS, Soni ÌýS, Dyck ÌýJRB. ÌýEmpagliflozin suppresses inflammation and protects against acute septic renal injury.Ìý Ìý±õ²Ô´Ú±ô²¹³¾³¾´Ç±è³ó²¹°ù³¾²¹³¦´Ç±ô´Ç²µ²â. 2021;29(1):269-279. doi:
58.
Dalbeth ÌýN, Choi ÌýHK, Joosten ÌýLAB, Ìýet al. ÌýGout.Ìý ÌýNat Rev Dis Primers. 2019;5(1):69. doi:
59.
Theofilis ÌýP, Sagris ÌýM, Oikonomou ÌýE, Ìýet al. ÌýThe impact of SGLT2 inhibitors on inflammation: a systematic review and meta-analysis of studies in rodents.Ìý ÌýInt Immunopharmacol. 2022;111:109080. doi:
60.
Scisciola ÌýL, Cataldo ÌýV, Taktaz ÌýF, Ìýet al. ÌýAnti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials.Ìý ÌýFront Cardiovasc Med. 2022;9:1008922. doi:
61.
Banerjee ÌýM, Pal ÌýR, Mukhopadhyay ÌýS. ÌýCan SGLT2 inhibitors prevent incident gout? a systematic review and meta-analysis.Ìý ÌýActa Diabetol. 2022;59(6):783-791. doi:
62.
McDowell ÌýK, Welsh ÌýP, Docherty ÌýKF, Ìýet al. ÌýDapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF.Ìý ÌýEur J Heart Fail. 2022;24(6):1066-1076. doi:
63.
Ferreira ÌýJP, Inzucchi ÌýSE, Mattheus ÌýM, Ìýet al. ÌýEmpagliflozin and uric acid metabolism in diabetes: a post hoc analysis of the EMPA-REG OUTCOME trial.Ìý ÌýDiabetes Obes Metab. 2022;24(1):135-141. doi:
64.
Suissa ÌýS. ÌýLower risk of death with SGLT2 inhibitors in observational studies: real or bias?Ìý ÌýDiabetes Care. 2018;41(1):6-10. doi:
65.
Nathan ÌýDM, Lachin ÌýJM, Balasubramanyam ÌýA, Ìýet al; GRADE Study Research Group. ÌýGlycemia reduction in type 2 diabetes - glycemic outcomes.Ìý ÌýN Engl J Med. 2022;387(12):1063-1074. doi:
66.
Yokose ÌýC, McCormick ÌýN, Lu ÌýN, Ìýet al. ÌýNationwide racial/ethnic disparities in US emergency department visits and hospitalizations for gout.Ìý ÌýRheumatology (Oxford). 2022. doi:
67.
Lim ÌýSY, Lu ÌýN, Oza ÌýA, Ìýet al. ÌýTrends in gout and rheumatoid arthritis hospitalizations in the United States, 1993-2011.Ìý Ìý´³´¡²Ñ´¡. 2016;315(21):2345-2347. doi:
68.
Stürmer ÌýT, Wang ÌýT, Golightly ÌýYM, Keil ÌýA, Lund ÌýJL, Jonsson Funk ÌýM. ÌýMethodological considerations when analysing and interpreting real-world data.Ìý ÌýRheumatology (Oxford). 2020;59(1):14-25. doi:
1 Comment for this article
EXPAND ALL
Interesting, and Not Unexpected
David Karpf, MD | Stanford University School of Medicine
While the results are interesting, but not unexpected, they will not change my clinical practice.

I have not used SUs in my patients with T2DM for more than 2 decades, as these drugs were approved in the 1950's simply because they lower blood glucose, but also cause weight gain, hypoglycemia, and likely impair beta-islet health, and probably increase cardiac risk. NOT the ideal drug, despite their low cost, for the average patient with T2DM. Much better to add a GLP-1 agonist, or a dual GLP-1/GIP agonist, or an SGLT-2 inhibitor, or even a TZD to
metformin. Based on both MOA as well as data.

In 2024, that's sort of like asking if statins are better than leeches for lowering CVD risk......

David B. Karpf, MD
CONFLICT OF INTEREST: None Reported
READ MORE
Original Investigation
April 15, 2024

Sodium-Glucose Cotransporter-2 Inhibitors vs Sulfonylureas for Gout Prevention Among Patients With Type 2 Diabetes Receiving Metformin

Author Affiliations
  • 1Rheumatology & Allergy Clinical Epidemiology Research Center, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston
  • 2The Mongan Institute, Department of Medicine, Massachusetts General Hospital, Boston
  • 3Department of Medicine, Harvard Medical School, Boston, Massachusetts
  • 4Arthritis Research Canada, Vancouver, British Columbia, Canada
  • 5Diabetes Center, Massachusetts General Hospital, Boston
  • 6Division of Rheumatology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
  • 7Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
  • 8Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore
  • 9University of Maryland Institute for Health Computing, Bethesda
  • 10Division of Gerontology, Department of Medicine, University of Maryland School of Medicine, Baltimore
JAMA Intern Med. 2024;184(6):650-660. doi:10.1001/jamainternmed.2024.0376
Key Points

QuestionÌý What is comparative effectiveness of sodium-glucose cotransporter-2 inhibitors (SGLT2i) vs sulfonylureas (most common second-line glucose-lowering therapy) associated with incident gout risk and recurrent flares among patients with type 2 diabetes (T2D) receiving metformin monotherapy?

FindingsÌý In this population-based cohort study of 34 064 adults with T2D, SGLT2i use (vs sulfonylureas) was associated with lower risk of incident gout, major adverse cardiovascular events and heart failure, and lower rates of recurrent flares.

MeaningÌý The gout and cardiovascular benefits associated with SGLT2i in these target trial emulations may guide selection of glucose-lowering therapy in T2D patients, at risk for or with gout.

Abstract

ImportanceÌý Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) are a revolutionary treatment for type 2 diabetes (T2D) with cardiovascular, kidney, and serum urate-lowering benefits.

ObjectiveÌý To compare risk of incident gout and rate of recurrent flares between patients with T2D initiating SGLT2i vs sulfonylurea, most common second-line glucose-lowering therapy, when added to metformin monotherapy.

Design, Setting, and ParticipantsÌý This sequential, propensity score-matched, new-user comparative effectiveness study using target trial emulation framework included adults with T2D receiving metformin monotherapy in a Canadian general population database from January 1, 2014, to June 30, 2022.

ExposuresÌý Initiation of SGLT2i vs sulfonylurea.

Main Outcomes and MeasuresÌý The primary outcome was incident gout diagnosis, ascertained by emergency department (ED), hospital, outpatient, and medication dispensing records. Secondary outcomes were gout-primary hospitalizations and ED visits and major adverse cardiovascular events (MACE), as well as recurrent flare rates among prevalent gout patients. Heart failure (HF) hospitalization was assessed as positive control outcome and osteoarthritis encounters as negative control. For target trial emulations, we used Cox proportional hazards and Poisson regressions with 1:1 propensity score matching (primary analysis) and overlap weighting (sensitivity analysis). The analysis was conducted from September to December, 2023.

ResultsÌý Among 34 604 propensity score matched adults with T2D initiating SGLT2i or sulfonylurea (20 816 [60%] male, mean [SD] age, 60 [12.4] years), incidence of gout was lower among SGLT2i initiators (4.27 events per 1000 person-years) than sulfonylurea initiators (6.91 events per 1000 person-years), with a hazard ratio (HR) of 0.62 (95% CI, 0.48-0.80) and a rate difference (RD) of −2.64 (95% CI, −3.99 to −1.29) per 1000 person-years. Associations persisted regardless of sex, age, or baseline diuretic use. SGLT2i use was also associated with fewer recurrent flares among gout patients (rate ratio, 0.67; 95% CI, 0.55-0.82; and RD, −20.9; 95% CI, −31.9 to −10.0 per 1000 person-years). HR and RD for MACE associated with SGLT2i use were 0.87 (95% CI, 0.77-0.98) and −3.58 (95% CI, −6.19 to −0.96) per 1000 person-years. For control outcomes, SGLT2i users had lower risk of HF (HR, 0.53; 95% CI, 0.38-0.76), as expected, with no difference in osteoarthritis (HR, 1.11; 95% CI, 0.94-1.34). Results were similar when applying propensity score overlap weighting.

ConclusionsÌý In this population-based cohort study, the gout and cardiovascular benefits associated with SGLT2i in these target trial emulations may guide selection of glucose-lowering therapy in patients with T2D, at risk for or already with gout.

×